A Novel Method to Measure The Water Content of The Leaves Using Digital Image Processing

dc.contributor.authorWagachchi, I.A.
dc.contributor.authorRassagala, R.D.K.
dc.contributor.authorAbeykoon, B.B.D.S.
dc.contributor.authorKartheeswaran, T.
dc.contributor.authorJayathunga, D.P.
dc.date.accessioned2019-07-11T06:20:40Z
dc.date.available2019-07-11T06:20:40Z
dc.date.issued2018
dc.description.abstractLeafy product industries like Tea, Tobacco, Palmyra, Leafy vegetables, and Ayurveda productions play a significant role to uplift the Sri Lankan economy. The water content in the leaves is an essential factor for leafy productions to maintain their quality. Naked eye observation of an expert is the general method to identify the water content. The objective of this study is to introduce a novel and easy method to measure the water content of the detached plant leaves using digital image processing. As a result, a simple computational water content prediction method has been built using image processing techniques to obtain a quality output at the end of production processes. The findings of this study help to identify the water content without an expert in an efficient manner. First, the colour images were captured in a control environment, while leaves were drying and simultaneously the weight was measured traditionally to find the water loss. Features were analysed from images to find the best features, which show a better correlation with the changes of the water content in the leaves. The basic features such as homogeneity, energy, contrast, variance, mean, median, min, max, range, kurtosis, skewness, standard deviation, entropy, correlation and IQR were extracted. The best features among the selected features have been chosen through correlation test. The classification was done with the K-Nearest neighbour algorithm by training with the selected best features of the training set of images. The green matrix of the RGB image is taken for the feature extraction to get better results. Finally, a simple model was built using the significant features which have a relationship with the water content measurement. 65.3% accuracy has been achieved, and this model can be used to predict the water content of a particular green leaf through images. This model will be a turning point for measuring the water content of the leaves in the industries in an automated manner.en_US
dc.identifier.isbn9789550481194
dc.identifier.urihttp://erepo.lib.uwu.ac.lk/bitstream/handle/123456789/1441/116-2018-A%20Novel%20Method%20to%20Measure%20The%20Water%20Content%20of%20The%20Leaves%20.pdf?sequence=1&isAllowed=y
dc.language.isoenen_US
dc.publisherUva Wellassa University of Sri Lankaen_US
dc.subjectComputer Scienceen_US
dc.subjectInformation Scienceen_US
dc.subjectComputing and Information Scienceen_US
dc.titleA Novel Method to Measure The Water Content of The Leaves Using Digital Image Processingen_US
dc.title.alternativeInternational Research Conference 2018en_US
dc.typeOtheren_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
116-2018-A Novel Method to Measure The Water Content of The Leaves .pdf
Size:
113.97 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: