A New Stochastic Restricted Two Parameter Estimator in Multiple Linear Regression Model

dc.contributor.authorKayathiri, S.
dc.contributor.authorArumairajan, S.
dc.date.accessioned2022-09-02T06:12:51Z
dc.date.available2022-09-02T06:12:51Z
dc.date.issued2021
dc.description.abstractInstead of using the Ordinary Least Square Estimator (OLSE) to estimate the regression coefficients, the biased estimators are proposed in the multiple linear regression to overcome the multicollinearity among the predictor variables. An alternative technique to solve the multicollinearity problem is to consider parameter estimation with some restrictions on the unknown parameters, which may be exact or stochastic restrictions. In this research, we propose a biased estimator, namely new stochastic restricted two parameter estimator (NSRTPE) in a multiple linear regression model to tackle the multicollinearity problem when the stochastic restrictions are available. The proposed estimator over the ordinary least square estimator (OLSE), ridge estimator (RE), Liu estimator (LE), almost unbiased Liu estimator (AULE), modified new two parameter estimator (MNTPE), mixed estimator (ME), stochastic restricted Liu estimator (SRLE) are compared in the scalar mean square error (SMSE) sense through a simulation study by considering different levels of multicollinearity and different values of shrinkage parameters (k and d) selected within the interval 0 to 1. From the simulation study, it can be noticed that the proposed estimator performs well than existing estimators when the value of d is large. Furthermore, it can be observed that the proposed estimator is always superior to MNTPE. Finally, it could be concluded that the proposed estimator is meaningful in practice. Keywords: Multiple linear regression; Multicollinearity; Stochastic restriction; New stochastic restricted two parameter estimator; Scalar Mean square erroren_US
dc.identifier.isbn978-624-5856-04-6
dc.identifier.urihttp://www.erepo.lib.uwu.ac.lk/bitstream/handle/123456789/9599/Page%20138%20-%20IRCUWU2021-99%20-Kayathiri-%20A%20New%20Stochastic%20Restricted%20Two%20Parameter%20Estimator%20in%20Multiple%20Linear%20Regression%20Model.pdf?sequence=1&isAllowed=y
dc.language.isoenen_US
dc.publisherUva Wellassa University of Sri Lankaen_US
dc.subjectEngineering Technologyen_US
dc.subjectEstimateen_US
dc.subjectMathematics and Statisticsen_US
dc.subjectEngineeringen_US
dc.titleA New Stochastic Restricted Two Parameter Estimator in Multiple Linear Regression Modelen_US
dc.title.alternativeInternational Research Conference 2021en_US
dc.typeOtheren_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Page 138 - IRCUWU2021-99 -Kayathiri- A New Stochastic Restricted Two Parameter Estimator in Multiple Linear Regression Model.pdf
Size:
149.23 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: